Squeezing with parametric modulation close to quantum regime

Avishek Chowdhury Paolo Vezio Francesco Marino Francesco Marin

Cavity opto-mechanics: membrane in the middle

Tunable finesse as a function of the membrane position

Cavity:

Finesse ~ 20,000
Cavity linewidth ~ 1.9 MHz

Membrane:

- Thickness ~ 100 nm
- Diameter ~ 1.64 mm
- \triangleright Q_{cryogenic temp} ~ 10⁷

Simplified optical set-up

- > Weak probe: to detect the displacement of the mechanical mode, in resonance with the cavity.
- > *Strong pump*: detuned from the cavity, used to optically cool down the mechanical mode.
- > LO beam: Local Oscillator beam used to make heterodyne measurement on the mechanical mode.

Membrane modes: eigen-modes

Choice of the modes

- Considerably high Q factor.
- High optomechanical coupling: highly dependent on the effective overlap between the laser beam and the membrane eigen mode.

Membrane modes: eigen-modes

We choose: Mode at 530 kHz

- ➢ Q factor: 6.4x10⁶.
- > With an optomechanical coupling $g_0 \sim 5$ Hz.

Cooling a mechanical mode

$$\delta\Omega_{\rm m}(\omega) = g^2 \frac{\Omega_{\rm m}}{\omega} \left[\frac{\Delta + \omega}{(\Delta + \omega)^2 + \kappa^2/4} + \frac{\Delta - \omega}{(\Delta - \omega)^2 + \kappa^2/4} \right]$$
$$\Gamma_{\rm opt}(\omega) = g^2 \frac{\Omega_{\rm m}}{\omega} \left[\frac{\kappa}{(\Delta + \omega)^2 + \kappa^2/4} - \frac{\kappa}{(\Delta - \omega)^2 + \kappa^2/4} \right]$$

Optical Spring effect

Damping of the mode 'm'

Cooling a mechanical mode

$$\Gamma_{\rm opt}(\omega) = g^2 \frac{\Omega_{\rm m}}{\omega} \left[\frac{\kappa}{(\Delta + \omega)^2 + \kappa^2/4} - \frac{\kappa}{(\Delta - \omega)^2 + \kappa^2/4} \right]$$

$$\Delta$$
 ~ к/2 = 1 MHz $g^2 = g_0^2 \bar{n}_{\mathrm{cav}}$

Cooling measurement relying on the measurement and calibration of motion induced scattering of light giving an average phonon occupancy $\langle n \rangle$

Quantum thermometry

Ratio of Stokes and anti-Stokes sideband from the mechanical oscillator:

Quantum Sci. Technol. 4 (2019) 024007

 $\langle n \rangle + 1$

 $\langle n \rangle$

The scattering picture

The scattering picture

Towards zero-point state

Lower bound to the position of SHO:

$$\Delta X \, \Delta Y \geq \frac{h}{2m_{eff}\Omega_m} = x_{ZPF}$$

Typical squeezing measurement: Measurement of noise in one quadrature -> Increase of noise in the other.

Already existing squeezing schemes:

- > Pulsed laser cooling of oscillator: *requries short pulsed laser.*
- Squeezing via backaction evading measurements (BAE): requires motional state close to the quantum regime.

Parametric squeezing

- > No strict requirement on the starting occupation number of motional state.
- > Experiments can be done in the 'bad-cavity' regime.

Modulation of spring constant at twice the resonant frequency

Modulation of spring constant at twice the resonant frequency

Squeezing the displacement in one quadrature while adding noise on the other: Leads to thermal squeezing of a mechanical oscillator

PRL 112, 023601 (2014)

PHYSICAL REVIEW LETTERS

week ending 17 JANUARY 2014

Squeezing a Thermal Mechanical Oscillator by Stabilized Parametric Effect on the Optical Spring

A. Pontin,^{1,2} M. Bonaldi,^{3,4} A. Borrielli,^{3,4} F. S. Cataliotti,^{5,6,7} F. Marino,^{7,8} G. A. Prodi,^{1,2} E. Serra,^{1,9} and F. Marin^{5,6,7,*}

Squeezed thermal state

Weak parametric tone (@ $2\Omega_m$) added to the pump beam

$$I_{pump} = I_{cool} + I_{par}$$

$$S_{Stokes} = \frac{\Gamma_{opt}}{2} \left[\frac{n+1-s/2}{\omega^2 + \left(\frac{\Gamma_{-}}{2}\right)^2} + \frac{n+1+s/2}{\omega^2 + \left(\frac{\Gamma_{+}}{2}\right)^2} \right]$$

Parametric cooling: scheme

Expected variance of the quadratures

Expected variance of the quadratures

 $\mathbf{s} = 0$

s = 0

s = 0.54

 $I_{pump} = I_{cool} + I_{par}, \text{ where: } I_{par} = \alpha I_{pump}$ (a) $I_{pump} \uparrow keeping '\alpha' constant: 's' is constant$ (b) $I_{par} \uparrow keeping I_{pump} constant: 's' varies keeping <math>\Gamma_{eff}$ constant

 $I_{pump} = I_{cool} + I_{par}, \text{ where: } I_{par} = \alpha I_{pump}$ (a) $I_{pump} \uparrow keeping '\alpha' constant: 's' is constant$ (b) $I_{par} \uparrow keeping I_{pump} constant: 's' varies keeping <math>\Gamma_{eff} constant$

Asymmetry with pump power

Asymmetry with pump power

Asymmetry as a function of 's'

Asymmetry as a function of 's'

Perspectives

Parametric feedback control to realize squeezing below 3dB limit close to quantum regime

Quantum squeezing at room temperature

Thanks

Francesco Marin

Francesco Marino

Paolo Vezio

Massimo Calamai